Experimental Confirmation of a Whole Set of tRNA Molecules in Two Archaeal Species

نویسندگان

  • Yoh-ichi Watanabe
  • Yutaka Kawarabayasi
چکیده

Based on the genomic sequences for most archaeal species, only one tRNA gene (isodecoder) is predicted for each triplet codon. This observation promotes analysis of a whole set of tRNA molecules and actual splicing patterns of interrupted tRNA in one organism. The entire genomic sequences of two Creanarchaeota, Aeropyrum pernix and Sulfolobus tokodaii, were determined approximately 15 years ago. In these genome datasets, 47 and 46 tRNA genes were detected, respectively. Among them, 14 and 24 genes, respectively, were predicted to be interrupted tRNA genes. To confirm the actual transcription of these predicted tRNA genes and identify the actual splicing patterns of the predicted interrupted tRNA molecules, RNA samples were prepared from each archaeal species and used to synthesize cDNA molecules with tRNA sequence-specific primers. Comparison of the nucleotide sequences of cDNA clones representing unspliced and spliced forms of interrupted tRNA molecules indicated that some introns were located at positions other than one base 3' from anticodon region and that bulge-helix-bulge structures were detected around the actual splicing sites in each interrupted tRNA molecule. Whole-set analyses of tRNA molecules revealed that the archaeal tRNA splicing mechanism may be essential for efficient splicing of all tRNAs produced from interrupted tRNA genes in these archaea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identified Hybrid tRNA Structure Genes in Archaeal Genome

Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...

متن کامل

Sequence Evidence in the Archaeal Genomes that tRNAs Emerged Through the Combination of Ancestral Genes as 5′ and 3′ tRNA Halves

The discovery of separate 5' and 3' halves of transfer RNA (tRNA) molecules-so-called split tRNA-in the archaeal parasite Nanoarchaeum equitans made us wonder whether ancestral tRNA was encoded on 1 or 2 genes. We performed a comprehensive phylogenetic analysis of tRNAs in 45 archaeal species to explore the relationship between the three types of tRNAs (nonintronic, intronic and split). We clas...

متن کامل

Characterization of a whole set of tRNA molecules in an aerobic hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1.

The tRNA molecule has an important role in translation, the function of which is to carry amino acids to the ribosomes. It is known that tRNA is transcribed from tRNA genes, some of which, in Eukarya and Archaea, contain introns. A computational analysis of the complete genome of Aeropyrum pernix K1 predicted the presence of 14 intron-containing tRNA genes. To elucidate whether these introns ar...

متن کامل

A Novel Two Phase Hybrid Switched Reluctance Motor/Field-Assisted Generator: Concept, Simulation, and Experimental Confirmation

The switched reluctance motor is a simple and robust machine, which has found application over a wide power and speed ranges in different shapes and geometries. This paper introduces a new configuration for a two phase unidirectional switched reluctance motor/field assisted generator. The proposed novel motor/generator consists of two magnetically independent stator and rotor sets (layers), whe...

متن کامل

University of California Santa Cruz Characterization of Archaeal Species through Rnase P and Transfer Rnas

CHARACTERIZATION OF ARCHAEAL SPECIES THROUGH RNASE P AND TRANSFER RNAS by Patricia Pak Lee Chan Archaea, the third domain of life, includes organisms that have been least studied. The mixture of eukaryotic and bacterial features in transcription and translation mechanisms prompts the interest of better understanding the transcription unit structure in archaea. Existing computational algorithms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015